
www.manaraa.com

Undecidability of Static AnalysisWilliam LandiSiemens Corporate Research Inc755 College Rd EastPrinceton, NJ 08540wlandi@scr.siemens.comAbstractStatic Analysis of programs is indispensable to any software tool, environment, or systemthat requires compile time information about the semantics of programs. With theemergence of languages like C and LISP, Static Analysis of programs with dynamicstorage and recursive data structures has become a �eld of active research. Such analysisis di�cult, and the Static Analysis community has recognized the need for simplifyingassumptions and approximate solutions. However, even under the common simplifyingassumptions, such analyses are harder than previously recognized. Two fundamentalStatic Analysis problems are May Alias and Must Alias. The former is not recursive(i.e., is undecidable) and the latter is not recursively enumerable (i.e., is uncomputable),even when all paths are executable in the program being analyzed for languages withif-statements, loops, dynamic storage, and recursive data structures.Categories and Subject Descriptors: D.3.1 [Programming Languages]: Processors; F.1.1 [Com-putation by Abstract Devices]: Models of Computation� bounded-action devices; F.4.1 [MathLogic and Formal Languages]: Mathematical Logic� computability theoryGeneral Terms: Languages, TheoryAdditional Key Words and Phrases: Alias analysis, data
ow analysis, abstract interpretation,halting problem From acm Letters on Programming Languages and Systems,Vol. 1, No. 4, December 1992, Pages 323-337.Permission to copy without fee all or part of this material is grantedprovided that the copies are not made or distributed for direct commercialadvantage, the ACM copyright notice and the title of the publication andits date appear, and notice is given that copying is by permission of theAssociation for Computing Machinery. To copy otherwise, or to republish,requires a free and/or speci�c permission.c
1992 ACM 1057-4514/92/1200-0323$01.501

www.manaraa.com

1 IntroductionStatic Analysis is the processes of extracting semantic information about a program at compiletime. One classical example is the live variables [4] problem; a variable x is live at a statements i� on some execution x is used (accessed) after s is executed without being rede�ned. Otherclassical problems include reaching de�nitions, available expressions, and very busy expressions [4].There are two main frameworks for doing Static Analysis: Data Flow Analysis [4] and AbstractInterpretation [3]. The framework is not relevant to this paper, as we show that two fundamentalStatic Analysis problems are harder than previously acknowledged, regardless of the frameworkused.We view the solution to a Static Analysis problem as the set of \facts" that hold for a givenprogram. Thus, for live variables the solution is f(x; s)j variable x is live at statement sg. Withthat in mind, we review a few de�nitions:� A set is recursive i� it can be accepted by a Turing machine that halts on all inputs.� A set is recursively enumerable i� it can be accepted by a Turing machine which may or maynot halt on all inputs.Static Analysis originally concentrated on FORTRAN, and was predominately con�ned to asingle procedure (intraprocedural analysis) [7, 9, 15]. However, even this simple form of StaticAnalysis is not recursive. The di�culty lies in conditionals. There are, in general, many pathsthrough a procedure, but not all paths correspond to an execution. For example, considerif (x > -1) y = 1;if (x < 0) y = -1;Execution of this fragment always executes exactly one then branch. It is impossible for both orneither then branches to be executed. Static Analysis is not recursive since determining whichpaths are executable is not recursive. To overcome this problem, Static Analysis is performedassuming that all paths through the program are executable [2]. This assumption is not alwaysvalid, but it is safe [2].1 Also, it simpli�es the problem and allows Static Analysis of FORTRANprocedures to be done fairly e�ciently. Some approaches (for example [16]) categorize some pathsas not executable. However, these techniques have limited applicability, and often must assumethat paths are executable.With a basis of a �rm understanding of intraprocedural Static Analysis of FORTRAN, StaticAnalysis of entire programs (interprocedural analysis) was investigated. Myers [14] came up withthe negative result that many interprocedural Static Analysis problems are NP complete. Prac-tically, this means that interprocedural Static Analysis must make further approximations overintraprocedural analysis or take an exponential amount of time.With the emergence of popular languages like C and LISP, the Static Analysis community hasturned its attention to languages with pointers, dynamic storage, and recursive data structures. Itis widely accepted that Static Analysis under these conditions is hard. The general feeling is thatit is probably NP complete [11, 13, 12]; this is incorrect. Recently, the problem of �nding aliaseswas shown to be P-space hard [10]. Unfortunately, this is still an underestimate.1The term conservative is used in [2] instead of safe. 2

www.manaraa.com

An alias occurs at some point during execution of a program when two or more names exist forthe same storage location. For example, the C statement \p = &v" creates an alias between �p andv. Aliases are associated with program points, indicating not only that �p and v refer to the samelocation during execution, but also where in the program they refer to the same location. Aliasing,statically �nding aliases, is a fundamental problem of Static Analysis. Consider the problem of�nding live variables for: s1: v = 1;s2: p = &v;s3: w = 2;s4: printf("%d",�p);The variable v is live at s3 only because �p is aliased to v when program point s4 is executed.Aliasing also in
uences most interesting Static Analysis problems. Any problem that is in
uencedby aliasing is at least as hard as aliasing. There are two types of aliasing.May Alias Find the aliases that occur during some execution of the program.Must Alias Find the aliases that occur on all executions of the program.Finding the aliases can mean determining the set of all aliases which hold at some associatedprogram points, or determining whether x and y are names for the same location at a particularprogram point s. We use the latter meaning as, in general, the set of all aliases maybe in�nite insize. We formally de�ne May Alias as a boolean function:may-aliasP(s; hx; yi) is true i� there is an execution of program P to program point s(including the e�ects of executing s) on which x and y refer to the same location.Must Alias is de�ned analogously. We show that, for languages with if-statements, loops, dynamicstorage, and recursive data structures, Intraprocedural May Alias is not recursive (i.e., is undecid-able) and Intraprocedural Must Alias is not recursively enumerable (i.e., is uncomputable) evenwhen all paths in a program are executable by reducing ([5], p. 321-322) the halting problem intoan alias problem. This is a di�erent from the result of Kam and Ullman [8] that the MOP solutionis undecidable for monotone frameworks.2 Reduction of the Halting Problem to an Alias ProblemA Deterministic Turing Machine (DTM) [1] is a tuple (Q,T,I,�,�,q0,qf) where:� Q = fq1, q2, ..., qnQg is the set of states� T = f�1; �2; :::; �nTg is the set of tape symbols� I � T is the set of input symbols� �: (Q � T) ! (Q � T � fL,R,Sg) is the transition function23

www.manaraa.com

� � 2 T � I is the blank symbol� q0 2 Q is the start state� qf 2 Q is the �nal stateWe assume that � is a total function and that the DTM will not move o� the left end of the tape. Ingeneral, neither of these assumptions are true, but any Turing machine can be modi�ed to conformto them.In this section, we specify a machine reduce (Figure 1) which takes a DTM M and input stringw and procedures a program C such that� may-aliasC(s; h��current state,valid simulationi) is true i� M halts on w.� must-aliasC(s; h��current state,not validi) is true i� M does not halt on w.� all paths through C are executable2.1 Representing an IDAn Instantaneous Description (ID) is an encoding of the following information:� contents of the DTM's tape� current state of the DTM� location of the tape headAn ID is usually represented by a string xqiy 2 T�QT� where the tape contains xy in�nitely paddedto the right with blanks, the current state is qi, and the tape head is scanning the �rst character ofy.3 We encode this information in the alias pattern of a program execution. By alias pattern, wemean the relationship of names to each other.We use a doubly linked list to represent the tape of a DTM: prev sym next . Foreach �i 2 T we create a variable �i. The \sym" �eld points to �i i� the tape location contains �i.Thus, the tape that contained \hello" padded to the right with blanks (�) is represented by thealias pattern: r r r r r r� � � � �r r r r r rr r r r r r- - - - -@@R ��	l:h: ? e: ? o: ? �: ?2L moves tape head left, R moves tape head right, and S leaves the tape head where it is.3qi is underlined in xqiy to make the state stand out from the tape string.4

www.manaraa.com

For each qi 2 Q we create a variable qi and there are two additional variables, current stateand tape head. Current state points to the current state of the machine, and tape headindicates the tape head location by pointing into the list representing the tape. The ID = heq2llois represented by:tape head: r?r r r r r r� � � � �r r r r r rr r r r r r- - - - -@@R ��	l:h: ? e: ? o: ? �: ? q1: q2: ... qnQ :current state: r?2.2 Programming LanguageIn order to perform the required reduction, we need to construct a program from a DTM. Theprogram is in C, but it could be any language with if-statements, loops, dynamic storage, andrecursive data structures. We use the address operator (&) but it is not fundamentally necessaryto the proof. To specify a C program from a DTM, we need the meta-statements: #for and #if.The syntax and meaning of these are relatively straight forward and should be apparent from thefollowing examples: #for i = 1 to 3xi = i;#endfor 9>=>; represents 8><>: x1 = 1;x2 = 2;x3 = 3;#for i = 1 to 3xi = i;#if i is oddyi = i;#endif#endfor 9>>>>>>>=>>>>>>>; represents 8>>>>><>>>>>: x1 = 1;y1 = 1;x2 = 2;x3 = 3;y3 = 3;Also, we use next bool for reading program input. It returns the next boolean value from the inputstream. If the end of the stream has been encountered, it returns 0.2.3 Simulating a DTMIn Section 2.1, we showed how we represent an ID with aliases. In this section, we show how tosimulate a DTM with the alias pattern of executions of a particular program. We now specify reduce(Figure 1) which constructs a program from a DTM M = (Q,T,I,�,�,q0,qf) with initial input w 25

www.manaraa.com

/� Given a DTM, M = (Q,T,I,�,�,q0,qf) and w 2 I� �/Generate variable declaration and initialization Figure 2Generate code for creating the initial Instantaneous Description Figure 3Generate code for simulating the transition function Figure 4Generate code for validating the result Figure 4s: Figure 1: Outline of the machine reduceI� such that ��current state is aliased to valid simulation on some execution to program points i� machine M halts on input w = x1x2:::xnw .Lemma 2.1 The code generated by Figure 3 creates the data structure that represents the initialcon�guration of M (q0x1x2:::xnw) in the manner described in Section 2.1.This is evident from inspection of the code. \current state = &q0;" points current stateto q0. tape head points to the �rst element of the linked list which corresponds to the tape headof M being on the beginning of the tape. Finally, NEXT SYM(i) points the \sym" �eld of theith element of the linked list to the variable representing the ith symbol on the tape (xi). This isexactly what is required by Section 2.1 for the initial ID q0x1x2:::xnw . 2As an example, consider the case where T = fh,e,l,o,�g, w = \hello", and q0 = q2. The initialID is q2hello and the code generated by Figure 3 produces:tape head: r? back: r?r r r r r r� � � � �r r r r r rr r r r r r- - - - -@@R ��	l:h: ? e: ? o: ? �: ? q1: q2: ... qnQ :current state: r?Notice that back points to the end of the linked list representing the tape. This allows us to adda new tape element to the end of the tape and, as seen later, is used to ensure that we never runo� the right end of the tape.The declaration and initialization of the variables of the program used to simulate a DTM arespeci�ed in Figure 2. All the variables except yes, no, not valid, and valid simulation have6

www.manaraa.com

/� Given a DTM, M = (Q,T,I,�,�,q0,qf) and w 2 I� �/typedef int **state;typedef int **letter;struct tape fletter *sym;struct tape *next,*prev;g *back,*tape head;state *current state;int not valid,valid simulation;int *yes = &valid simulation;int *no = ¬ valid;#for i=1 to nQstate qi = &yes;#endfor#for i=1 to nTletter �i = &yes;#endforFigure 2: Variable declaration and initialization/� Given a DTM, M = (Q,T,I,�,�,q0,qf) and w 2 I� �/current state = &q0;back = malloc(sizeof(struct tape));tape head = back;tape head->prev = NULL;tape head->next = NULL;tape head->sym = &�;/* initialize tape to w = x1x2:::xnw */#for i = 1 to nwback->next = malloc(sizeof(struct tape));back->sym = ξback->next->prev = back;back = back->next;back->next = NULL;back->sym = &�; 9>>>>>>>=>>>>>>>; NEXT SYM(i)#endfor Figure 3: Initial Instantaneous Description (ID)7

www.manaraa.com

/� Given a DTM, M = (Q,T,I,�,�,q0,qf) and w 2 I� �//� next bool returns the next boolean value from the input stream. �/back->next = malloc(sizeof(struct tape));back->next->prev = back;back = back->next;back->next = NULL;back->sym = &�; 9>>>>>=>>>>>; ADD TO END#for i = 1 to nQ /* once for each state qi 2 Q */#for j = 1 to nT /* once for each letter �j 2 T *//* let �(qi; �j) = (q0i; �0j; d) */if (next bool == 1) fqi = &no;�j = &no;��current state = ¬ valid;��(tape head->sym) = ¬ valid;current state = &q0i;tape head->sym = &�0j;#if d = Rtape head = tape head->next;#endif#if d = Ltape head = tape head->prev;#endifqi = &yes;�j = &yes;
9>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>; DELTA(i,j)g else#endfor#endfor yes = ¬ valid; /� This is the else part of the last� if-then-else produced above. */gno = ¬ valid; /� �no already is not valid, but the� assignment makes the proof simpler �/#for i=1 to nQqi = &no;#endforqf = &yes; 9>>>>>>>=>>>>>>>; CHECK ANSWERs: /� ��current state is valid simulation here i� M halts on w �/Figure 4: Representation of the transition function8

www.manaraa.com

already been explained in Section 2.1. Three of the four new variables are simply to record ifthe current path is a valid simulation of M . Yes points to valid simulation i� the current pathis a simulation of M and yes points to not valid otherwise. The fourth variable (no) is just a\don't care" location for pointers that must refer to something other than yes. No always pointsto not valid. Continuing our example, the initialization speci�ed in Figure 2 followed by the codespeci�ed in Figure 3 for T = fh,e,l,o,�g, w = \hello", and q0 = q2, produces:tape head: r? back: r?r r r r r r� � � � �r r r r r rr r r r r r- - - - -@@R ��	l: r?h: ?r? e: ?r? o: ?r? �: ?r? q1: r? q2: r? ... qnQ : r?current state: r?no: r? -yes: r?not valid: valid simulation:The remainder of the program created by reduce is mostly a while loop (Figure 4). Each passthrough the body of the loop represents one application of the transition function (�). The �rstpart the the loop (ADD TO END) simply adds a new tape location, initially blank, to the rightend of the tape. This ensures that whenever the simulated DTM moves right on the tape, a tapelocation is available to it. The remainder of the loop is a nested if-then-else-ifif (next bool == 1) DELTA(1,1);else if (next bool == 1) DELTA(1,2);...else if (next bool == 1) DELTA(nQ,nT);else yes = ¬ valid;where DELTA(i,j) (explained below) is the code to implement �(qi; �j). The codeif (next bool == 1) DELTA(1,1);if (next bool == 1) DELTA(1,2);...if (next bool == 1) DELTA(nQ,nT);would also be valid and does not require an arti�cially deep if-then-else-if nesting. However, in theformer, a pass through the loop either is not a valid simulation or represents exactly one transitionof the DTM M . In the later, a pass through the loop is an invalid simulation or represents a legalsequence of 0 to nQ�nT transitions of M . The former is preferable because it makes the proof ofcorrectness easier. 9

www.manaraa.com

Lemma 2.2 If yes points to not valid before the loop speci�ed in Figure 4 is executed then yesstill points to not valid after execution of the loop.Inspection of the code reveals that in the while loop only ¬ valid can be assigned to yes. 2The next lemma basically states that if the execution is a valid simulation ofM before executingthe loop generated by Figure 4, then one path through the loop simulates the next transition of Mand all other paths are not a valid simulation.Lemma 2.3 If before the loop speci�ed in Figure 4 is executed, yes points to valid simulation,the ID encoded by the alias pattern is xqiy, and xqiy `M x0qjy0 then on all but one path through theloop yes points to not valid and on the remaining path, yes points to valid simulation and thealias pattern represents the ID x0qjy0.We illustrate this proof with the example heq2llo `M hq1eelo (therefore �(q2,l) = (q1,e,L)). Forthis example, the alias pattern before execution of the loop is:tape head: r? back: r?r r r r r� � � �r r r r rr r r r r- - - - - �-� r r r...@@R ��	l: r?h: ?r? e: ?r? o: ?r? �: ?r? q1: r? q2: r? ... qnQ : r?current state: r?no: r? -yes: r?not valid: valid simulation:Before execution of the while loop, all � 2 T and all q 2 Q point to yes.4 The �rst partof the loop, as stated earlier just expands the tape. The last else-clause simply points yes tonot valid signaling an invalid simulation. Now consider the code for DELTA(i,j) which representsthe application of �(qi; �j). Notice that we can only use this rule if M is in state qi and the tapehead is reading �j . Thus we would like to say (in pseudo-C)if (�current state 6= qi or �tape head->sym 6= �j)yes = ¬ valid /� i.e., not a valid simulation �/ (1)but this would create paths which are not executable in the program. The �rst four statementsof DELTA(i,j) do exactly (1) without using a conditional. The statements \qi = &no; �j = &no"4We have not proven this here, but it follows from a simple inductive proof on number of iterations of the whileloop. 10

www.manaraa.com

point qi and �j to no. All other states and alphabet symbols still point to yes. In our runningexample (where qi = q2 and �j = l) we have:tape head: r? back: r?r r r r r� � � �r r r r rr r r r r- - - - - �-� r r r...@@R ��	l: r@@@Rh: ?r? e: ?r? o: ?r? �: ?r? q1: r? q2: r����� ... qnQ : r?current state: r?no: r? -yes: r?not valid: valid simulation:The statements, \��current state = ¬ valid" and \��(tape head->sym) = ¬ valid",make sure that the application of �(qi,�j) is applicable. There are two cases that can occur:� The tape head is scanning �j (l) and M is in state qi (q2)This means that ��current state is no and ��(tape head->sym) is also no. Thus both ofthese statements e�ectively are \no = ¬ valid" and the value of yes is unchanged andstill points to valid simulation. This is the path through the loop that is a valid simulationof M . For all i,j there is exactly one such path since M is a DTM.� Either the tape head is not scanning �j (l) or M is not in state qi (q2)In the �rst case, ��current state is yes. Thus \��current state = ¬ valid" causesyes to point to not valid instead of valid simulation. In the second case ��(tape head->sym) is yes and \��(tape head->sym) = ¬ valid" causes yes to point to not valid.The lemma is satis�ed regardless of the subsequent code because yes points to not valid.We now proceed assuming thatM is scanning �j (l) and is in state qi (q2). Since �(qi,�j) = (q0i,�0j,d)we want to shift to state q0i (\current state = &q0i"), write �0j to the tape (\tape head->sym =&�0j"), and move the tape head one unit in direction d:#if d = R #if d = Ltape head = tape head->next; tape head = tape head->prev;#endif #endifFinally, the statements \qi = &yes; �j = &yes" restore the condition that all state and alpha-bet variables point to yes. To �nish our example where �(q2,l) = (q1,e,L), the program store nowis: 11

www.manaraa.com

tape head: r? back: r?r r r r r� � � �r r r r rr r r r r- - - - - �-� r r r...���� ��	l: r?h: ?r? e: ?r? o: ?r? �: ?r? q1: r? q2: r? ... qnQ : r?current state: r�����no: r? -yes: r?not valid: valid simulation:2 The rest of Figure 4 is addressed in the following lemma:Lemma 2.4 M halts on w i� on some path to s, in the program generated by reduce,��current state is valid simulation.Consider the program C generated by reduce. By an inductive argument it is easy to show that:1. on all paths to the top of the while loop on which yes points to valid simulation, if thealias pattern represents x0qi0y0 then q0w `�M x0qi0y0.2. if q0w `�M xqiy then there is at least one path5 to the top of the while loop generated byFigure 4 on which yes points to valid simulation and the alias pattern represents xqiy.The proofs are by induction on the number of times the path has passed through the top of theloop and on number of steps M has taken to derive xqiy. In both proofs, the base case is shownby Lemma 2.1 and the induction step can be shown by appealing to Lemma 2.2 and Lemma 2.3.M halts on w i� q0w `�M xqfy (some x,y); thus M halts on w i� there exists a path to the top ofthe loop on which yes points to valid simulation and current state points to qf .Consider the e�ects of CHECK ANSWER in Figure 4.� If current state does not point to qf then **current state must be not valid.� If yes points to not valid then **current state must be not valid.� If current state points to qf and yes points to valid simulation then **current statemust be valid simulation.This means that M halts on w i� on some path to s ��current state is valid simulation. 25exactly one path unless xqiy `+M xqiy. 12

www.manaraa.com

3 May Alias is not recursiveTheorem 3.1 Statically determining Intraprocedural May Alias for languages with if-statements,loops, dynamic storage, and recursive data structures is recursively enumerable but not recursiveeven when all paths through the program are executable.Consider the program C generated by reduce. All paths through C are executable. Considerany path P , let c1c2:::ck be a sequence with a unique ci for every conditional (i.e., if and whilestatements) on P in the order that they appear on P . Let ci be 1 if the true branch of thecorresponding conditional is taken on P , and let ci be 0 otherwise. Clearly, c1c2:::ck is an inputthat executes path P . By Lemma 2.4, M halts on w i� on some path to s in C ��current stateis valid simulation. Therefore, May Alias is not recursive as it can be used to solve the haltingproblem even for programs on which all paths are executable. May Alias is recursively enumerablesince we can nondeterministically generate runs of a program and questions about aliasing duringan execution can be answered by examining the symbol table and the program store. 2Theorem 3.2 Statically determining IntraproceduralMust Alias for languages with if-statements,loops, dynamic storage, and recursive data structures is not recursively enumerable even whenall paths through the program are executable.A quick look at the program produced by reduce (on which all paths are executable; see proofof Theorem 3.1) shows that yes either points to not valid or valid simulation, no always pointsto not valid, q 2 Q always points to yes or no, and current state always points to a state. Thisimplies that ��current state is either valid simulation or not valid. Since we already showedthat M halts on w i� on some path to s ��current state is valid simulation (Lemma 2.4), itfollows that M does not halt i� ��current state is not valid on all paths to s. Thus, Must Aliascan be used to solve the complement of the halting problem which is not recursively enumerable.This means that Must Alias is not recursively enumerable given the language requirements statedby the theorem. 2 13

www.manaraa.com

4 ConclusionWe have shown that intraprocedural May Alias is not recursive and intraprocedural Must Alias isnot recursively enumerable even for programs on which all paths are executable given the languagehas dynamically allocated recursive data structures, loops, and if-statements. This is an extremelynegative result, considering that a doubly linked list was the only dynamic data structure needed.Unfortunately, the proofs can be modi�ed to use only a singly linked list. In Appendix A, we showhow to modify reduce so that only a singly linked list is needed.These results do not imply that Static Analysis is dead. They simply mean that, as has beenknown all along, some approximation must be done. What the new results do show is that, even ifwe are allowed to write exponential algorithms, Static Analysis would still have to be approximate.It probably also means that, in the presence of dynamically allocated recursive data structures, wehave to accept approximations of lesser quality, which also take more time and space to computethan in FORTRAN. One �nal implication of our results is that while determining the structure ofdynamic data structures (i.e., is it a tree? linked list? ...) is important, it is not su�cient to makeStatic Analysis recursive, because our proofs used only programs with linked lists.Currently, Static Analysis is in the same situation as it was for FORTRAN 20 or so years ago.We are dealing with a problem which is not recursive, and need to come up with a good set ofsimplifying assumptions and algorithms that yield reasonably good approximations quickly andcheaply. In most work in Static Analysis, these assumptions are being introduced in an ad hocmanner and are often not even explicitly stated. In the future, it would be nice to have simplifyingassumptions that would work for Static Analysis is general. One such assumption is that onlypolynomial length paths need be considered. This seems reasonable, as we already assume thatprograms \terminate normally" (for example, no division by 0), and non-polynomial executions aregenerally not tolerated. The nice result of this assumption is that it makes most Static AnalysesNP complete (see Appendix B). On the other hand, it is di�cult to see how this would in
uencethe development of approximate algorithms.Acknowledgments: We thank Rita Altucher, Bruce Ladendorf, Tom Marlowe, Michael Plat-o�, and the reviewers for their comments on this material.14

www.manaraa.com

References[1] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The Design and Analysis of Computer Algorithms.Addison-Wesley, 1976.[2] Aho, A. V., Sethi, R., and Ullman, J. D. Compilers: Principles, Techniques, and Tools. Addison-Wesley,1986.[3] Cousot, P., and Cousot, R. Abstract interpretation: A uni�ed lattice model for static analysis of programsby construction or approximation of �xpoints. In Conference Record of the Fourth Annual ACM Symposium onPrinciples of Programming Languages (Jan. 1977), pp. 238{252.[4] Hecht, M. S. Flow Analysis of Computer Programs. Elsevier North-Holland, 1977.[5] Hopcroft, J. E., and Ullman, J. D. Introduction to Automata Theory, Languages, and Computation.Addison-Wesley, Reading, Mass., 1979.[6] Horwitz, S., Pfeiffer, P., and Reps, T. Dependence analysis for pointer variables. In Proceedings of theACM SIGPLAN Symposium on Compiler Construction (June 1989), pp. 28{40.[7] Kam, J. B., and Ullman, J. D. Global
ow analysis and iterative algorithms. Journal of the ACM 23, 1(1976), 158{171.[8] Kam, J. B., and Ullman, J. D. Monotone data
ow analysis frameworks. Acta Informatica 7 (1977), 305{317.[9] Kildall, G. A uni�ed approach to global program optimization. In Conference Record of the ACM Symposiumon Principles of Programming Languages (Jan. 1973), pp. 194{206.[10] Landi, W. Interprocedural Aliasing in the Presence of Pointers. PhD thesis, Rutgers University, Jan. 1992.LCSR-TR-174.[11] Landi, W., and Ryder, B. G. Pointer-induced aliasing: A problem classi�cation. In Conference Record of theEighteenth Annual ACM Symposium on Principles of Programming Languages (Jan. 1991), pp. 93{103.[12] Larus, J. R. Restructuring Symbolic Programs for Concurrent Execution on Multiprocessors. PhD thesis,University of California Berkeley, May 1989.[13] Larus, J. R., and Hilfinger, P. N. Detecting con
icts between structure accesses. In Proceedings of the SIG-PLAN '88 Conference on Programming Language Design and Implementation (July 1988), pp. 21{34. SIGPLANNOTICES, Vol. 23, No. 7.[14] Myers, E. M. A precise interprocedural data
ow algorithm. In Conference Record of the Eighth Annual ACMSymposium on Principles of Programming Languages (Jan. 1981), pp. 219{230.[15] Ullman, J. D. Fast algorithms for the elimination of common subexpressions. Acta Informatica 2, 3 (1973),191{213.[16] Wegman, M., and Zadeck, F. K. Constant propagation with conditional branches. ACM Transactions onProgramming Languages and Systems 13, 2 (Apr. 1991), 181{210.A Modi�cation to singly linked listThe machine reduce (Figure 1) is modi�ed to construct a program with only a singly linked listand that still satisfy Theorem 3.1 and Theorem 3.2 as follows:� Remove prev �eld from struct tape. Also remove all statements dealing with prev.� Add the �eld \int ��not at" to type struct tape. Point not at to yes whenever a newtape element is created. 15

www.manaraa.com

� Add a variable \struct tape �front" which will always point to the �rst (leftmost) elementof the linked list.� Immediately before the while loop that simulates � add the statement:tape head�>not at = &noIn general, the not at �eld of the linked list representing the tape points to yes except attape head where it points to no.� Replace the code for when d = R in the loop with:#if d = Rtape head->not at = &yes;tape head = tape head->next ;tape head->not at = &no;#endif� Finally, replace the code for when d = L in the loop with:#if d = Ltape head = front;while (next bool == 1) fADD TO END /� The code for ADD TO END here �/tape head = tape head->next;g/� tape head->next->not at points to yes and this� assignment signals invalid simulation unless� tape head is one LEFT of where it was �/�(tape head->next->not at) = ¬ valid;tape head->next->not at = &yes;tape head->not at = &no;#endifB Polynomial paths onlyWhen only polynomial length paths are considered, May Alias and the complement of Must AliasareNP complete for programs on which all paths are executable given the language has dynamicallyallocated recursive data structures, loops, and if-statements. These problems are in NP becausewe can nondeterministically generate an execution of the program and then simulate the executionin time linear in the length of the execution (a similar argument is in [12]). From the program store16

www.manaraa.com

we can easily answer questions about May Alias and the complement of Must Alias. This argumentworks for Static Analysis problems which can be nondeterministically answered for a given executionin a polynomial amount of time, in the size of the program and length of the execution path, fromthe program, symbol table, and a possibly augmented program store. However, the augmentedstore must be polynomial in the size of the original store; for example, [6].The fact that May Alias and the complement of Must Alias are both NP hard under this newassumption is evident because our original proofs of this claim [11, 10] do not contain any loopsand only linear length paths exist. Since most Static Analyses are in
uenced by aliases, they arealso NP hard.

17

