Undecidability of Static Analysis

William Landi
Siemens Corporate Research Inc
755 College Rd East
Princeton, NJ 08540

wlandi@scr.siemens.com

Abstract

Static Analysis of programs is indispensable to any software tool, environment, or system
that requires compile time information about the semantics of programs. With the
emergence of languages like C and LISP, Static Analysis of programs with dynamic
storage and recursive data structures has become a field of active research. Such analysis
is difficult, and the Static Analysis community has recognized the need for simplifying
assumptions and approximate solutions. However, even under the common simplifying
assumptions, such analyses are harder than previously recognized. Two fundamental
Static Analysis problems are May Alias and Must Alias. The former is not recursive
(i.e.,is undecidable) and the latter is not recursively enumerable (i.e., is uncomputable),
even when all paths are executable in the program being analyzed for languages with
if-statements, loops, dynamic storage, and recursive data structures.

Categories and Subject Descriptors: D.3.1 [Programming Languages|: Processors; F.1.1 [Com-
putation by Abstract Devices|: Models of Computation— bounded-action devices; F.4.1 [Math
Logic and Formal Languages]: Mathematical Logic— computability theory

General Terms: Languages, Theory

Additional Key Words and Phrases: Alias analysis, data flow analysis, abstract interpretation,
halting problem

From acm Letters on Programming Languages and Systems,

Vol. 1, No. 4, December 1992, Pages 323-337.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and

its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a free and/or specific permission.

©1992 ACM 1057-4514,/92/1200-0323%01.50

www.manaraa.com

1 Introduction

Static Analysis is the processes of extracting semantic information about a program at compile
time. One classical example is the live variables [4] problem; a variable z is live at a statement
s iff on some execution z is used (accessed) after s is executed without being redefined. Other
classical problems include reaching definitions, available expressions, and very busy expressions [4].
There are two main frameworks for doing Static Analysis: Data Flow Analysis [4] and Abstract
Interpretation [3]. The framework is not relevant to this paper, as we show that two fundamental
Static Analysis problems are harder than previously acknowledged, regardless of the framework
used.

We view the solution to a Static Analysis problem as the set of “facts” that hold for a given
program. Thus, for live variables the solution is {(z,s)| variable z is live at statement s}. With
that in mind, we review a few definitions:

o A set is recursive iff it can be accepted by a Turing machine that halts on all inputs.

o A set is recursively enumerable iff it can be accepted by a Turing machine which may or may
not halt on all inputs.

Static Analysis originally concentrated on FORTRAN, and was predominately confined to a
single procedure (intraprocedural analysis) [7, 9, 15]. However, even this simple form of Static
Analysis is not recursive. The difficulty lies in conditionals. There are, in general, many paths
through a procedure, but not all paths correspond to an execution. For example, consider

if (x> -1) y=1;
if (x<0)y=-1;

Execution of this fragment always executes exactly one then branch. It is impossible for both or
neither then branches to be executed. Static Analysis is not recursive since determining which
paths are executable is not recursive. To overcome this problem, Static Analysis is performed
assuming that all paths through the program are executable [2]. This assumption is not always
valid, but it is safe [2].! Also, it simplifies the problem and allows Static Analysis of FORTRAN
procedures to be done fairly efficiently. Some approaches (for example [16]) categorize some paths
as not executable. However, these techniques have limited applicability, and often must assume
that paths are executable.

With a basis of a firm understanding of intraprocedural Static Analysis of FORTRAN, Static
Analysis of entire programs (interprocedural analysis) was investigated. Myers [14] came up with
the negative result that many interprocedural Static Analysis problems are AP complete. Prac-
tically, this means that interprocedural Static Analysis must make further approximations over
intraprocedural analysis or take an exponential amount of time.

With the emergence of popular languages like C and LISP, the Static Analysis community has
turned its attention to languages with pointers, dynamic storage, and recursive data structures. It
is widely accepted that Static Analysis under these conditions is hard. The general feeling is that
it is probably AP complete [11, 13, 12]; this is incorrect. Recently, the problem of finding aliases
was shown to be P-space hard [10]. Unfortunately, this is still an underestimate.

!The term conservativeis used in [2] instead of safe.

www.manaraa.com

An alias occurs at some point during execution of a program when two or more names exist for
the same storage location. For example, the C statement “p = &v” creates an alias between *p and
v. Aliases are associated with program points, indicating not only that *p and v refer to the same
location during execution, but also where in the program they refer to the same location. Aliasing,
statically finding aliases, is a fundamental problem of Static Analysis. Consider the problem of
finding live variables for:

s1: v =1;
S2: p = &v;
S3: W = 2;
s4: printf("hd",*p);

The variable v is live at s3 only because #p is aliased to v when program point s, is executed.
Aliasing also influences most interesting Static Analysis problems. Any problem that is influenced
by aliasing is at least as hard as aliasing. There are two types of aliasing.

May Alias Find the aliases that occur during some execution of the program.
Must Alias Find the aliases that occur on all executions of the program.

Finding the aliases can mean determining the set of all aliases which hold at some associated
program points, or determining whether x and y are names for the same location at a particular
program point s. We use the latter meaning as, in general, the set of all aliases maybe infinite in
size. We formally define May Alias as a boolean function:

may-aliasp(s, (x,y)) is true iff there is an execution of program P to program point s
(including the effects of executing s) on which & and y refer to the same location.

Must Alias is defined analogously. We show that, for languages with if-statements, loops, dynamic
storage, and recursive data structures, Intraprocedural May Alias is not recursive (i.e., is undecid-
able) and Intraprocedural Must Alias is not recursively enumerable (i.e., is uncomputable) even
when all paths in a program are executable by reducing ([5], p. 321-322) the halting problem into
an alias problem. This is a different from the result of Kam and Ullman [8] that the MOP solution

is undecidable for monotone frameworks.

2 Reduction of the Halting Problem to an Alias Problem

A Deterministic Turing Machine (DTM) [1] is a tuple (Q,T,1,6,8,q0,q5) where:

* Q = {d1, q2, -+, 4ugy } is the set of states

o T ={01,09,...,0,,} is the set of tape symbols

o I C T is the set of input symbols

06 (QxT)— (QxT x {L,R,S}) is the transition function?

www.manaraa.com

e 3 € T — lis the blank symbol
e qo € Q is the start state
e s € Q is the final state

We assume that ¢ is a total function and that the DTM will not move off the left end of the tape. In
general, neither of these assumptions are true, but any Turing machine can be modified to conform
to them.

In this section, we specify a machine reduce (Figure 1) which takes a DTM M and input string

w and procedures a program C such that

o may-alias (s, (x+current state,valid_simulation)) is true iff M halts on w.
o must-alias (s, (xxcurrent state,not valid)) is true iff M does not halt on w.

o all paths through C are executable

2.1 Representing an ID
An Instantaneous Description (ID) is an encoding of the following information:

e contents of the DTM’s tape
e current state of the DTM

e location of the tape head

An ID is usually represented by a string z¢;y € T*QT™ where the tape contains zy infinitely padded
to the right with blanks, the current state is ¢;, and the tape head is scanning the first character of
y.> We encode this information in the alias pattern of a program execution. By alias pattern, we

mean the relationship of names to each other.

We use a doubly linked list to represent the tape of a DTM: ‘ prev | sym | next ‘ . For

each o; € T we create a variable ¢;. The “sym” field points to o; iff the tape location contains o;.
Thus, the tape that contained “hello” padded to the right with blanks (/) is represented by the

alias pattern:

a
]

el

h: e: l: o: Jox

2L moves tape head left, R moves tape head right, and S leaves the tape head where it is.
% ¢ is underlined in zqiy to make the state stand out from the tape string.

www.manaraa.com

For each q; € Q we create a variable q; and there are two additional variables, current_state
and tape_head. Current_state points to the current state of the machine, and tape_head
indicates the tape head location by pointing into the list representing the tape. The ID = hegyllo
is represented by:

tape_head:

e lef=Tlslof= ool =T Lo [=T [o= []]

h:ﬁ e:ﬁ 1\D/ Og ﬂ:g qau:[] g e gt [

2.2 Programming Language

current_state:

In order to perform the required reduction, we need to construct a program from a DTM. The
program is in C, but it could be any language with if-statements, loops, dynamic storage, and
recursive data structures. We use the address operator (&) but it is not fundamentally necessary
to the proof. To specify a C program from a DTM, we need the meta-statements: #for and #if.
The syntax and meaning of these are relatively straight forward and should be apparent from the

following examples:

#for + = 1 to 3 X1 = 1;

X; = 1 represents X9 = 2;

#tendfor X3 = 3;
#for 2 = 1 to 3

. x1 = 1;

X; = 1 =1:

#if i is odd yiE

. represents X9 = 2

yi =% = 3.

. X3 = 3’

#endif - 3.

#endfor e ’

Also, we use next_bool for reading program input. It returns the next boolean value from the input

stream. If the end of the stream has been encountered, it returns 0.

2.3 Simulating a DTM

In Section 2.1, we showed how we represent an ID with aliases. In this section, we show how to
simulate a DTM with the alias pattern of executions of a particular program. We now specify reduce

(Figure 1) which constructs a program from a DTM M = (Q,T,1,6,8,q0,q5) with initial input w €

www.manaraa.com

/* Given a DTM, M = (Q,T,16,8,q0,q5) and w € I* x/

Generate variable declaration and initialization Figure 2
Generate code for creating the initial Instantaneous Description Figure 3
Generate code for simulating the transition function Figure 4
Generate code for validating the result Figure 4

Figure 1: Outline of the machine reduce

I* such that sxcurrent_state is aliased to valid_simulation on some execution to program point

s iff machine M halts on input w = 2129...24,,.

Lemma 2.1 The code generated by Figure 3 creates the data structure that represents the initial

configuration of M (qox123...2,,) in the manner described in Section 2.1.

This is evident from inspection of the code. “current_state = &qg;” points current_state
to qg. tape_head points to the first element of the linked list which corresponds to the tape head
of M being on the beginning of the tape. Finally, NEXT_SYM(7) points the “sym” field of the

" element of the linked list to the variable representing the i*" symbol on the tape (z;). This is
exactly what is required by Section 2.1 for the initial ID goz123...75,. O
As an example, consider the case where T = {h,e 0,6}, w = “hello”, and qy = qz. The initial

ID is gahello and the code generated by Figure 3 produces:

tape_head: @ back: [1]
. | . current_state:
|'r| e[! e [= EI
v et \m/ orf m{ R

Notice that back points to the end of the linked list representing the tape. This allows us to add
a new tape element to the end of the tape and, as seen later, is used to ensure that we never run
off the right end of the tape.

The declaration and initialization of the variables of the program used to simulate a DTM are

specified in Figure 2. All the variables except yes, no, not_valid, and valid_simulation have

www.manaraa.com

/* Given a DTM, M = (Q,T,16,8,q0,q5) and w € I* x/

typedef int **state;
typedef int **letter;
struct tape {
letter *sym;
struct tape *next,*prev;
} #*back,*tape_head;
state *current_state;
int not_valid,valid_simulation;
int *yes = &valid_simulation;
int *no = ¬_valid;
#for 1=1 to ng
state q; = &yes;
#endfor
#for i=1 to nr
letter o; = &yes;
#endfor

Figure 2: Variable declaration and initialization

/* Given a DTM, M = (Q,T,16,8,q0,q5) and w € I* x/
current_state = &qq;
back = malloc(sizeof(struct tape));
tape_head = back;
tape_head->prev = NULL;

tape_head->next

NULL;

tape head->sym = &3;
/* initialize tape to w = xq&g...x,, */

#for 1 =

back-
back-
back-

back

back-
back-

#endfor

1 to ny

>next = malloc(sizeof(struct tape));
>sym = &z;;

>next->prev = back;

= back->next;

>next = NULL;

>sym = &3;

NEXT_SYM(3)

Figure 3: Initial Instantaneous Description (ID)

www.manaraa.com

/* Given a DTM, M = (Q,T.1,6,8,q0,q5) and w € I* x/

/+ next_bool returns the next boolean value from the input stream. */

back->next =

malloc(sizeof (struct tape));

back->next->prev = back;
back = back->next;

back->next =

back->sym =

NULL:
&3;

#for i = 1 to ng /* once for each state ¢; € Q */

#for 5 =

1 to nr /* once for each letter o; € T */

/* let 6(qi,05) = (¢, 075, d) */
if (next_bool == 1) {

q; = &no;
0j = &no;
fkcurrent_state = ¬_valid;
x(tape_head->sym) = ¬_valid;
current_state = &¢;
tape head->sym = &07;
#if d = R

tape_head = tape_head->next;
#endif
#if d = L

tape_head = tape_head->prev;
#endif
q; = &yes;
o = &yes;

} else
#endfor
#endfor

ADD_TO_END

DELTA(i,j)

yes = ¬_valid; /+ This is the else part of the last
* if-then-else produced above. */

}

no = ¬_valid; /* *no already is not_valid, but the

#for i=1 to ng
q; = &no;

#tendfor

q5 = &yes;

/* #xcurrent_state is valid_simulation here iff M halts on w */

Figure 4: Representation of the transition function

* assignment makes the proof simpler x/

CHECK_ANSWER

www.manaraa.com

already been explained in Section 2.1. Three of the four new variables are simply to record if
the current path is a valid simulation of M. Yes points to valid_simulation iff the current path
is a simulation of M and yes points to not_valid otherwise. The fourth variable (no) is just a
“don’t care” location for pointers that must refer to something other than yes. No always points
to not_valid. Continuing our example, the initialization specified in Figure 2 followed by the code

specified in Figure 3 for T = {h,el,0,6}, w = “hello”, and q¢ = g3, produces:

tape_head: @ back: [4]
| L L o o o current_state:
Clle = sl =T [l =T e o= s [T 1]
q1: ga: e Qg
h:[{ e: E{ l: o: [{ ﬁ[{ ! ? : “ ?
no: yes:
not_valid: valid _simulation:

The remainder of the program created by reduce is mostly a while loop (Figure 4). Each pass
through the body of the loop represents one application of the transition function (§). The first
part the the loop (ADD_TO_END) simply adds a new tape location, initially blank, to the right
end of the tape. This ensures that whenever the simulated DTM moves right on the tape, a tape

location is available to it. The remainder of the loop is a nested if-then-else-if

if (next_bool == 1) DELTA(1,1);
else if (next_bool == 1) DELTA(1,2);

else if (next_bool == 1) DELTA(ng,n7);
else yes = ¬_valid;

where DELTA(i,j) (explained below) is the code to implement 6(q;,0;). The code

1) DELTA(1,1);
1) DELTA(1,2);

if (next_bool =
if (next_bool =

1f . (next_bool 1) DELTA(ng,nt);

would also be valid and does not require an artificially deep if-then-else-if nesting. However, in the
former, a pass through the loop either is not a valid simulation or represents exactly one transition
of the DTM M. In the later, a pass through the loop is an invalid simulation or represents a legal

sequence of 0 to ng#*nr transitions of M. The former is preferable because it makes the proof of

correctness easier.

www.manaraa.com

Lemma 2.2 If yes points to not_valid before the loop specified in Figure | is executed then yes

still points to not_valid after execution of the loop.

Inspection of the code reveals that in the while loop only ¬_valid can be assigned to yes. O
The next lemma basically states that if the execution is a valid simulation of M before executing
the loop generated by Figure 4, then one path through the loop simulates the next transition of M

and all other paths are not a valid simulation.

Lemma 2.3 If before the loop specified in Figure / is executed, yes points to valid_simulation,
the ID encoded by the alias pattern is xq;y, and xq;y Far ¥ q;y then on all but one path through the
loop yes points to not_valid and on the remaining path, yes points to valid_simulation and the

alias pattern represents the ID 2/ q;y .

We illustrate this proof with the example heqsllo -y hqgeelo (therefore 6(qz,l) = (qi,e,L)). For

this example, the alias pattern before execution of the loop is:

tap&head:@ back: [¢]
Vi L L o ﬁ current_state:
Clhl=T =t =T e [T T o= - =

q1: ga: e Qg
h:[{ e: E{ l: o: [{ ﬁ[{ ! ? ? ? ?
no:% yes: E

not_valid: valid _simulation:

Before execution of the while loop, all ¢ € T and all q € Q point to yes. The first part

of the loop, as stated earlier just expands the tape. The last else-clause simply points yes to
not_valid signaling an invalid simulation. Now consider the code for DELTA(i,j) which represents
the application of é(q;,o;). Notice that we can only use this rule if M is in state q; and the tape

head is reading o;. Thus we would like to say (in pseudo-C)

if (*current_state # q; or stapehead->sym # 0;)
yes = ¬_valid /« i.e., not a valid simulation */

(1)

but this would create paths which are not executable in the program. The first four statements

of DELTA(i,j) do exactly (1) without using a conditional. The statements “q; = &no; o; = &no”

*We have not proven this here, but it follows from a simple inductive proof on number of iterations of the while
loop.

10

www.manaraa.com

point q; and o; to no. All other states and alphabet symbols still point to yes. In our running

example (where q; = q2 and ¢; = 1) we have:

tape_head: back: [¢]

e T V. L L ﬁ current_state:
Ll = o= [l = e [=t o= - ==

h: [{ e: E{ I: o: [{ ﬁ[{ qﬂ? b v ne? ?
yes:

no:
not_valid: valid _simulation:

The statements, “sxkcurrent_state = ¬_valid” and “sxx(tape head->sym) = ¬_valid”,

make sure that the application of 6(q;,0;) is applicable. There are two cases that can occur:

o The tape head is scanning o; (1) and M is in state q; (q2)
This means that *xcurrent_state is no and *+(tape_head->sym) is also no. Thus both of
these statements effectively are “no = ¬_valid” and the value of yes is unchanged and
still points to valid_simulation. This is the path through the loop that is a valid simulation

of M. For all ,7 there is exactly one such path since M is a DTM.

o Lither the tape head is not scanning o; (1) or M is not in state q; (q2)
In the first case, **current_state is yes. Thus “s*current_state = ¬_valid” causes
yes to point to not_valid instead of valid_simulation. In the second case *+(tape_head-
>sym) is yes and “x+(tape head->sym) = ¬_valid” causes yes to point to not_valid.

The lemma is satisfied regardless of the subsequent code because yes points to not_valid.

We now proceed assuming that M is scanning o; (1) and is in state q; (qz2). Since 6(q;,0;) = (q},07,d)

19

we want to shift to state g} (“current state = &¢”), write o} to the tape (“tape head->sym =

&o’”), and move the tape head one unit in direction d:

#if d = R #if d = L
tape_head = tape_ head->next; tape_head = tape_head->prev;
#endif #endif

Finally, the statements “q; = &yes; o0; = &yes” restore the condition that all state and alpha-
bet variables point to yes. To finish our example where §(qz,l) = (q1,e,L.), the program store now

1s:

11

www.manaraa.com

tape _head: @ back: [¢]
e , , o ﬁ current_state;
[*]s [I' o [F=L =P L= =T,

Yol [i/ g(o s ™ qz: ?
not_valid:‘% valid_simulation: %

The rest of Figure 4 is addressed in the following lemma:

Lemma 2.4 M halts on w iff on some path to s, in the program generated by reduce,

xxcurrent_state is valid_simulation.

Consider the program C generated by reduce. By an inductive argument it is easy to show that:

1. on all paths to the top of the while loop on which yes points to valid_simulation, if the
alias pattern represents x'qyy’ then qow 3, x'qiry’.

2. if gow Fj; Xq;y then there is at least one path® to the top of the while loop generated by

Figure 4 on which yes points to valid_simulation and the alias pattern represents xq,y.

The proofs are by induction on the number of times the path has passed through the top of the
loop and on number of steps M has taken to derive xq,;y. In both proofs, the base case is shown
by Lemma 2.1 and the induction step can be shown by appealing to Lemma 2.2 and Lemma 2.3.
M halts on w iff gow 3, Xq5y (some x,y); thus M halts on w iff there exists a path to the top of
the loop on which yes points to valid_simulation and current_state points to qy.

Consider the effects of CHECK_ANSWLER in Figure 4.

o If current_state does not point to qs then **current_state must be not_valid.
¢ If yes points to not_valid then **current_state must be not_valid.

o If current_state points to qs and yes points to valid_simulation then **current_state

must be valid_simulation.

This means that M halts on w iff on some path to s *+*current_state is valid_simulation. O

®exactly one path unless Xy I—j\'/[Xq;y-

12

www.manaraa.com

3 May Alias is not recursive

Theorem 3.1 Statically determining Intraprocedural May Alias for languages with if-statements,
loops, dynamic storage, and recursive data structures is recursively enumerable but not recursive

even when all paths through the program are executable.

Consider the program C generated by reduce. All paths through C are executable. Consider
any path P, let ¢yca...c,; be a sequence with a unique ¢; for every conditional (i.e., if and while
statements) on P in the order that they appear on P. Let ¢; be 1 if the true branch of the
corresponding conditional is taken on P, and let ¢; be 0 otherwise. Clearly, ¢j¢s...cp is an input
that executes path P. By Lemma 2.4, M halts on w iff on some path to s in C #xcurrent_state
is valid _simulation. Therefore, May Alias is not recursive as it can be used to solve the halting
problem even for programs on which all paths are executable. May Alias is recursively enumerable
since we can nondeterministically generate runs of a program and questions about aliasing during

an execution can be answered by examining the symbol table and the program store. O

Theorem 3.2 Statically determining Intraprocedural Must Alias for languages with if-statements,
loops, dynamic storage, and recursive data structures is not recursively enumerable even when

all paths through the program are executable.

A quick look at the program produced by reduce (on which all paths are executable; see proof
of Theorem 3.1) shows that yes either points to not_valid or valid_simulation, no always points
to not_valid, q € Q always points to yes or no, and current_state always points to a state. This
implies that *kcurrent_state is either valid_simulation or not_valid. Since we already showed
that M halts on w iff on some path to s s+current_state is valid_simulation (Lemma 2.4), it
follows that M does not halt iff xxcurrent_state is not_valid on all paths to s. Thus, Must Alias
can be used to solve the complement of the halting problem which is not recursively enumerable.
This means that Must Alias is not recursively enumerable given the language requirements stated

by the theorem. O

13

www.manaraa.com

4 Conclusion

We have shown that intraprocedural May Alias is not recursive and intraprocedural Must Alias is
not recursively enumerable even for programs on which all paths are executable given the language
has dynamically allocated recursive data structures, loops, and if-statements. This is an extremely
negative result, considering that a doubly linked list was the only dynamic data structure needed.
Unfortunately, the proofs can be modified to use only a singly linked list. In Appendix A, we show
how to modify reduce so that only a singly linked list is needed.

These results do not imply that Static Analysis is dead. They simply mean that, as has been
known all along, some approximation must be done. What the new results do show is that, even if
we are allowed to write exponential algorithms, Static Analysis would still have to be approximate.
It probably also means that, in the presence of dynamically allocated recursive data structures, we
have to accept approximations of lesser quality, which also take more time and space to compute
than in FORTRAN. One final implication of our results is that while determining the structure of
dynamic data structures (i.e., is it a tree? linked list? ...) is important, it is not sufficient to make
Static Analysis recursive, because our proofs used only programs with linked lists.

Currently, Static Analysis is in the same situation as it was for FORTRAN 20 or so years ago.
We are dealing with a problem which is not recursive, and need to come up with a good set of
simplifying assumptions and algorithms that yield reasonably good approximations quickly and
cheaply. In most work in Static Analysis, these assumptions are being introduced in an ad hoc
manner and are often not even explicitly stated. In the future, it would be nice to have simplifying
assumptions that would work for Static Analysis is general. One such assumption is that only
polynomial length paths need be considered. This seems reasonable, as we already assume that
programs “terminate normally” (for example, no division by 0), and non-polynomial executions are
generally not tolerated. The nice result of this assumption is that it makes most Static Analyses
NP complete (see Appendix B). On the other hand, it is difficult to see how this would influence
the development of approximate algorithms.

Acknowledgments: We thank Rita Altucher, Bruce Ladendorf, Tom Marlowe, Michael Plat-

off, and the reviewers for their comments on this material.

14

www.manaraa.com

References
[1] AHO, A. V., HoprcroFT, J. E., AND ULLMAN, J. D. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1976.

[2] AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers: Principles, Techniques, and Tools. Addison-Wesley,
1986.

[3] Cousor, P., AND CousoT, R. Abstract interpretation: A unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In Conference Record of the Fourth Annual ACM Symposium on
Principles of Programming Languages (Jan. 1977), pp. 238-252.

[4] HECHT, M. S. Flow Analysis of Computer Programs. Elsevier North-Holland, 1977.

[5] HopcroFT, J. E., AND ULLMAN, J. D. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, Mass., 1979.

[6] HORWITZ, S., PFEIFFER, P., AND REPS, T. Dependence analysis for pointer variables. In Proceedings of the
ACM SIGPLAN Symposium on Compiler Construction (June 1989), pp. 28-40.

[7] Kam, J. B., AND ULLMAN, J. D. Global flow analysis and iterative algorithms. Journal of the ACM 23, 1
(1976), 158-171.

[8] KaM, J. B., AND ULLMAN, J. D. Monotone data flow analysis frameworks. Acta Informatica 7 (1977), 305-317.

[9] KILDALL, G. A unified approach to global program optimization. In Conference Record of the ACM Symposium
on Principles of Programming Languages (Jan. 1973), pp. 194-206.

[10] LanD1, W. Interprocedural Aliasing in the Presence of Pointers. PhD thesis, Rutgers University, Jan. 1992.
LCSR-TR-174.

[11] LanDI, W., AND RYDER, B. G. Pointer-induced aliasing: A problem classification. In Conference Record of the
FEighteenth Annual ACM Symposium on Principles of Programming Languages (Jan. 1991), pp. 93-103.

[12] Larus, J. R. Restructuring Symbolic Programs for Concurrent Ezecution on Multiprocessors. PhD thesis,
University of California Berkeley, May 1989.

[13] Larus, J. R., AND HILFINGER, P. N. Detecting conflicts between structure accesses. In Proceedings of the SIG-
PLAN ’88 Conference on Programming Language Design and Implementation (July 1988), pp. 21-34. SIGPLAN
NOTICES, Vol. 23, No. 7.

[14] MYERS, E. M. A precise interprocedural data flow algorithm. In Conference Record of the Eighth Annual ACM
Symposium on Principles of Programming Languages (Jan. 1981), pp. 219-230.

[15] ULLMAN, J. D. Fast algorithms for the elimination of common subexpressions. Acta Informatica 2, 3 (1973),
191-213.

[16] WEGMAN, M., AND ZADECK, F. K. Constant propagation with conditional branches. ACM Transactions on
Programming Languages and Systems 13, 2 (Apr. 1991), 181-210.

A Modification to singly linked list

The machine reduce (Figure 1) is modified to construct a program with only a singly linked list

and that still satisfy Theorem 3.1 and Theorem 3.2 as follows:

¢ Remove prev field from struct tape. Also remove all statements dealing with prev.

o Add the field “int x*xnot_at” to type struct tape. Point not_at to yes whenever a new

tape element is created.

15

www.manaraa.com

e Add a variable “struct tape *front” which will always point to the first (leftmost) element

of the linked list.

e Immediately before the while loop that simulates ¢ add the statement:
tape_head—>not_at = &no

In general, the not_at field of the linked list representing the tape points to yes except at

tape_head where it points to no.

e Replace the code for when d = R in the loop with:

#if d = R
tape_head->not_at = &yes;
tape_head = tape_head->next ;
tape_head->not_at = &no;
#endif

e Finally, replace the code for when d = L in the loop with:

#if d = L
tape_head = front;
while (next_bool == 1) {
ADD_TO_END /* The code for ADD_TO_END here */
tape_head = tape_head->next;

}

/* tape_head->next->not_at points to yes and this
* assignment signals invalid simulation unless

* tape_head is one LEFT of where it was */
*(tape_head->next->not_at) = ¬_valid;

tape_head->next->not_at = &yes;
tape_head->not_at = &no;
#endif

B Polynomial paths only

When only polynomial length paths are considered, May Alias and the complement of Must Alias
are N'P complete for programs on which all paths are executable given the language has dynamically
allocated recursive data structures, loops, and if-statements. These problems are in NP because
we can nondeterministically generate an execution of the program and then simulate the execution

in time linear in the length of the execution (a similar argument is in [12]). From the program store

16

www.manaraa.com

we can easily answer questions about May Alias and the complement of Must Alias. This argument
works for Static Analysis problems which can be nondeterministically answered for a given execution
in a polynomial amount of time, in the size of the program and length of the execution path, from
the program, symbol table, and a possibly augmented program store. However, the augmented
store must be polynomial in the size of the original store; for example, [6].

The fact that May Alias and the complement of Must Alias are both AP hard under this new

assumption is evident because our original proofs of this claim [11, 10] do not contain any loops

and only linear length paths exist. Since most Static Analyses are influenced by aliases, they are

also NP hard.

17

www.manharaa.com

